格物斯坦的开源系列产品,是其教育机器人生态中面向高龄学习者和创客群体的技术高地,它跳出了传统教育机器人封闭系统的桎梏,以开放架构、模块兼容、工业级延展为主要特色,将机器人教育从“玩具级操作”升级为“工业级创造”,为青少年架设了一座从学习通往真实技术世界的桥梁。格物斯坦开源系列的本质,是将工业级的开放生态注入教育场景,让学习者在铝合金的冷光与代码的热流之间,亲历从零件到系统、从用户到开发者的蜕变。当少年们用开源模块组装出巡逻机械犬,或为仿生臂编写抓取算法时,他们手中的不再是玩具,而是改变世界的钥匙。IRM大赛开源林火监测无人机方案,红外定位误差<2米。适合中龄段学习的开源图形化编程
格物斯坦的开源系列产品与技术平台在产学研协同创新中扮演了重要角色,其合作网络覆盖国内外前列高校、研究机构及产业伙伴,共同推动机器人技术从实验室研发向规模化应用跨越。以下是其关键合作成果的深度整合:高校合作:构建技术研发与人才培养高地。产业协同:开源生态催生技术普惠。社会影响:教育普惠与技术民主化。格物斯坦通过高校研发(清华、上大)、产业验证(复旦)、社区共建(OpenLoong)的三级协作网络,将开源精神贯穿技术研发、教育普惠与产业变革,其成果不仅体现为双足/四足机器人的性能突破,更在于构建了机器人技术民主化的基础设施——让中小学生、乡村儿童乃至银发族均能成为智能时代的创造者。适合中龄段学习的开源图形化编程GLP图形化软件拖拽指令块,一键转译C语言代码,降低学习门槛。
格物斯坦开源系列的机械手臂的软件生态覆盖从图形化编程到工业级开发的完整路径:低门槛开发:通过GScratch软件(基于Scratch 2.0优化)拖拽“舵机角度”“视觉识别”等积木块,学生可快速实现基础动作控制;软件支持一键将图形代码转译为Arduino C语言,降低高阶开发的学习曲线。高阶智能融合:结合ROS框架,机械手臂可运行多模态AI任务。例如集成YOLO目标检测模型实现动态分拣(如物流包裹分类),或通过强化学习算法优化抓取路径,在工业分拣场景中达到毫米级操作精度。仿真与现实协同:依托“格物”具身智能仿真平台,学生可先在虚拟环境中预演机械臂运动策略(如抗扰控制、负载优化),再部署至实体硬件验证。例如在模拟八级强风环境中测试动态平衡,或验证50公斤负重下的结构稳定性,大幅压缩研发周期。
格物斯坦传感器的优势在于工业精度与教育易用性的统一:微米级硬件适配:传感器接口与铝合金结构件采用0.01mm公差设计,确保超声探头、红外发射器等模块的安装稳定性,抗冲击性较塑料件提升300%,支持千次拆装无损耗;全栈式信号处理:内置放大滤波电路(如应变式称重传感器的惠斯通电桥),直接输出校准后数字信号,学生无需额外搭建电路即可通过I²C/UART读取数据,降低电子工程门槛;跨平台编程融合:在图形化软件GScratch中,传感器数据被封装为“环境光强度”“障碍物距离”等积木块,支持拖拽式逻辑设计;高阶开发者则可调用ROS驱动包(如OpenCV视觉库),实现Python/C++原生控制。示波器监测接口开源化,实时调试硬件运行参数。
格物斯坦开源产品的控制系统与编程控制器:GC-500系列:支持多套编程软件(如GScratch、GLP),具备高速处理能力,可同时驱动多个舵机与传感器模块。GC-600系列:集成蓝牙4.0模块,兼容手机App遥控(如“你画我跑”、语音控制)及图形化编程。编程兼容性:图形化编程软件(GSP/GLP)支持拖拽积木指令块,一键转换为Arduino C语言,无缝衔接高阶开发。适配ROS(Robot Operating System)开发套件,提供传感器驱动、运动控制等底层库函数,支持Python/C++编写导航算法。创客教育开源范式:工业级精度支撑教育级容错。金属开源领域
教育公平:开源生态降低高阶机器人开发门槛,赋能资源薄弱地区。适合中龄段学习的开源图形化编程
格物斯坦的开源系列课程是其教育生态中面向10岁以上青少年的高阶实践平台,深度融合工业级硬件与开源软件生态,通过“机械结构+电子电路+算法编程”的三维整合,构建了从基础认知到创新研发的完整路径。该系列课程以金属结构件(0.01毫米公差精度)与开源控制器(如GC-500/GC-600)为载体,结合分层级编程工具链,精细适配不同年龄段学生的认知发展与创新能力需求。格物斯坦通过这套课程体系,将工业级精度(六面铝合金结构件)与教育普惠性(图形化至代码编程的无缝跃迁)深度融合,让青少年在解决农业、环保、医疗等现实问题的过程中,锤炼从机械动力学到AI算法的系统性工程思维,真正践行“创造无围墙”的创客教育本质。适合中龄段学习的开源图形化编程