1病例管理病例编号、姓名、性别、年龄、联系方式、疾病名称、症状、就诊时间、医生姓名、医院名称、***进展等2病原体监测病原体名称、监测时间、监测地点、监测结果、检测方法、样本类型等3预警预报预警类型、预警、级、预警信息、发生时间、预计影响范围、采取措施等4接种管理疫苗名称、接种时间、接种地点、接种人员、剂次、保护效果等5**分析**类型、发生时间、发生地点、病例数量、传播途径、***情况、预防措施等6防控措施防控措施名称、执行时间、执行人员、防控效果、总结等7应急响应应急响应、级、启动时间、启动部门、任务分工、应急措施、应急效果等8消毒管理消毒时间、消毒地点、消毒方法、消毒剂、消毒效果等9物资管理物资名称、领用时间、领用人员、物资数量、使用情况、补充计划等10数据统计统计时间、统计类型、统计指标、统计结果、对比分析等11人员管理人员姓名、职务、联系方式、工作部门、培训记录、奖惩情况等12疫苗管理疫苗名称、入库时间、生产厂家、批号、购置方式、使用情况等网络覆盖全国,确保数据收集的全面性和及时性。全国传染病系统

移动端和智能手环针对用户,移动端提供了解以及上报流行病的渠道,智能手环实时监测用户身体状态。传染疾病防控与智能分析系统实现了对流行疾病**、舆情、城市人群、行程轨迹、疫苗接种、风向温度等**相关大数据的多维多尺度监测、专题制图和时空分析,同时基于手机信令和行程大数据核实确诊患者的个人行程以及密接人员,并通过知识图谱构建病患关系图谱,精细筛选确诊人群、潜在***人群信息及其行为轨迹,结合机器学习ARIMA时序分析模型,SIR、SEIR传播模型对传播规律及其拐点进行模拟预测,并通过K-Means聚类、情感分词、TF-IDF算法、LDA主题模型进行舆情主题信息提取及民众情感分析,为民众生活、疾控部门的**防控提供科学有力的支撑。青海全国传染病系统分类整合多源数据、运用智能分析技术,实现对传染病的实时监测、风险评估和早期预警的关键公共卫生工具。

传染病系统架构基于疾控中心提供的四十多种法定传染疾病大数据、行程防疫大数据、电信部门提供的手机信令大数据、通过我们定制手环获取的隔离用户生理特征和轨迹大数据以及通过分布式爬虫获取的**舆情大数据,综合利用移动互联网、大数据、云计算、IoT、AI智能算法、时空数据挖掘、GIS等先进技术,建立**参与的全过程全周期**精细预防与防控体系。本系统自上而下分为四层,分别为:众源数据层、应用支撑层、业务逻辑层和应用表现层。
智慧转型,从“被动报告”到“主动感知”传统传染病监测依赖医疗机构被动上报,存在时效性差、覆盖面有限等问题。系统通过强化日常监测信息分析和定期风险评估,构建起“主动感知”新模式。系统实时研判重点传染病流行态势和发展趋势,定时通报监测分析结果,为防控策略调整提供前瞻性指导。更重要的是,系统推动医疗机构和疾控机构信息系统有效对接,实现涉疫数据双向流通和异常信号自动识别。例如,当患者就诊记录、药品**或社区健康异常事件出现关联性波动时,系统可立即触发预警,将**信息从传统的“被动报告”转向“主动感知”,大幅缩短响应时间。减少传染病传播范围,保护人民生命健康,降低医疗资源负担。

第二,针对病原检测结果阳***例,主动提醒医疗机构进行确诊。通过智能算法,国家前置软件能实时监测和识别病原检测结果中为“阳性”的病例,并自动提取相关信息,与已有的传染病数据库进行匹配和比对,实现对病原检测阳性结果尚未作出明确诊断病例的发现,即时触发提醒进行病例追踪复诊的工作流。第三,对主动感知的异常病例实时提醒排查。利用深度学习模型训练和动态风险评估规则库,国家前置软件能根据历史数据和实时监测数据,对异常病例和重点关注疾病进行动态风险评估。疾控中心通过流行病学调查、实验室检测等方式,获取传染病的详细数据,为预警和防控提供科学依据。内蒙古云端传染病系统APP
信息平台是传染病预警与监测系统的中心,负责数据收集、处理、分析和发布。全国传染病系统
马家奇认为,传统传染病监测与预警方式的主要弊端在于:一是“被动监测”,即依赖临床医生的主动诊断和报告。传染病的早期诊断,需要医生结合患者多病原检查检验结果和流行病学史等进行综合判断,很可能因病原检测结果延迟、缺乏风险识别辅助等各种因素,使得医生无法及时、准确做出诊断,导致传染病漏诊和迟报、漏报,甚至忽略对疑似新发传染病的早期排查。二是“人工报告”,存在信息采集缓慢、数据准确性不高等问题。上报流程存在断点,导致监测报告时效性、监测数据准确性均有所下降。数据显示,从临床医生作出传染病诊断,到疾控人员看到报告,一般需4个小时以上。手工转录的方式,也为各种人为因素导致填报信息错误提供了可能。全国传染病系统