企业商机
解决方案基本参数
  • 品牌
  • 倍联德
  • 型号
  • 齐全
解决方案企业商机

随着Blackwell架构GPU与CXL内存扩展技术的商用化,倍联德正研发支持FP4精度计算的下一代服务器,预计将AI推理性能再提升2倍。公司创始人覃超剑表示:“我们的目标不只是提供硬件,更要通过软硬协同优化,让云边端协同像使用办公软件一样便捷。”从西安的智慧交通到宁波的智慧医疗,从重庆的轨道交通到东莞的智慧城管,倍联德实业有限公司正以全栈技术能力赋能千行百业,为全球智慧城市建设提供“中国方案”。在这场数字化变革中,这家深圳企业正用技术创新诠释“中国智造”的全球竞争力。智算中心解决方案为人工智能研究和应用提供了强大的算力支持。液冷解决方案厂商

液冷解决方案厂商,解决方案

针对不同规模客户的差异化需求,倍联德提供从标准产品到OEM/ODM的灵活合作模式。例如,为中小实验室设计的Mini-Eve系列工作站,在2U空间内集成2张RTX 4090显卡与全闪存存储,支持Stable Diffusion文生图任务的批量处理,而成本只为同类产品的60%。倍联德产品已出口至东南亚、中东及欧洲市场,为当地智慧城市、金融科技等领域提供本地化部署方案。在新加坡港的自动化码头项目中,其边缘计算工作站通过5G网络实时处理AGV小车的视觉导航数据,使货物吞吐效率提升35%,同时降低20%的运维成本。广东高性能液冷工作站解决方案平台支持GPU虚拟化技术将物理显卡资源池化,支持多用户共享高性能计算能力,降低企业IT成本。

液冷解决方案厂商,解决方案

在2025年的智慧城市浪潮中,数据已成为驱动城市治理、公共服务与产业升级的重心引擎。作为国家高新企业,深圳市倍联德实业有限公司(以下简称“倍联德”)凭借其在边缘计算、AI服务器、液冷技术及全闪存存储领域的全栈创新能力,为智慧交通、智慧安防、智慧医疗等场景提供高性能、低延迟、绿色节能的算力支撑,成为推动中国智慧城市建设的企业。倍联德智慧城市解决方案已渗透至交通、安防、医疗等关键领域,形成从硬件到算法的完整能力:倍联德与华为、英特尔合作开发的“交通信号灯智能控制平台”,集成边缘计算节点与全闪存存储系统,支持实时分析交通流量、天气、事件等多维度数据。在重庆轨道交通COCC(控制中心)项目中,该平台通过运能运量匹配分析,将列车准点率提升至99.5%,乘客平均等待时间从15分钟降至3分钟。

倍联德G800P系列AI服务器搭载8张NVIDIA RTX 6000 Ada显卡,单柜算力密度达500PFlops,支持多卡并行计算与混合精度训练。在深圳某自动驾驶测试场中,该服务器作为训练与推理的重要平台,实时处理激光雷达、摄像头等多传感器数据,将模型迭代周期从72小时压缩至8小时,同时通过NVLink互联技术实现显存共享,使单柜可支持10张显卡协同工作,满足L4级自动驾驶的算力需求。倍联德的“云边通道”技术,通过消息、数据、业务三通道实现云边资源的高效协同。例如,在宁波市综治平台中,边缘节点通过MQTT协议实时上传视频流至云端,云端AI模型分析后下发指令至边缘设备,实现占道经营、违规停车等事件的自动识别与处置,事件响应时间从15分钟压缩至90秒,人工巡查成本降低60%。该方案已通过UL60601-1医疗级认证,确保数据传输的安全性与合规性。存储服务器与边缘计算节点融合,构建分布式智能存储网络,支撑自动驾驶实时数据回传。

液冷解决方案厂商,解决方案

倍联德智慧交通解决方案已覆盖自动驾驶、智能交通管理、物流运输等多个领域,形成从数据采集、处理到决策的全链路能力:在文远知行与新加坡交通部的合作中,倍联德提供G808P-V3服务器作为自动驾驶训练与推理的重心平台。该服务器搭载双路AMD EPYC 7763处理器与128TB NVMe SSD缓存层,将6710亿参数的DeepSeek医学大模型训练时间从72小时压缩至8小时,技术迁移至自动驾驶领域后,使车辆路径规划效率提升5倍,同时通过WORM技术确保训练数据不可篡改,满足L4级自动驾驶的合规要求。城市治理解决方案利用大数据提升了城市管理的精细化水平。广东存储服务器解决方案提供商

智慧交通摄像头搭载AI芯片,可同时识别车牌、车型与违章行为,准确率超过99%。液冷解决方案厂商

针对高密度计算场景的散热难题,倍联德推出R300Q/R500Q系列2U液冷服务器,采用冷板式液冷设计,PUE值低至1.05,较传统风冷方案节能40%。以某三甲医院为例,其部署的R500Q液冷工作站搭载8张NVIDIA RTX 5880 Ada显卡,在运行6710亿参数的DeepSeek医学大模型时,单柜功率密度达50kW,但通过液冷技术将噪音控制在55分贝以下,同时使单次模型训练的碳排放从1.2吨降至0.3吨,相当于种植16棵冷杉的环保效益。倍联德自主研发的异构计算平台支持CPU+GPU+DPU协同工作,通过动态资源调度优化计算-通信重叠率。在香港科技大学的深度学习平台升级项目中,其定制化工作站采用4张NVIDIA RTX 4090显卡与至强四代处理器组合,配合TensorFlow框架实现98%的硬件利用率,使ResNet-152模型的训练时间从72小时压缩至8小时,而部署成本只为传统方案的1/3。液冷解决方案厂商

解决方案产品展示
  • 液冷解决方案厂商,解决方案
  • 液冷解决方案厂商,解决方案
  • 液冷解决方案厂商,解决方案
与解决方案相关的问答
信息来源于互联网 本站不为信息真实性负责