我国的一支科研团队提出了一种深度学习辅助的模型基紧密耦合视觉-惯性姿态估计方法,解决了视觉失效场景下的头部旋转运动姿态估计难题,对虚拟现实、增强现实、人机交互等领域的高精度姿态感知具有重要意义。该方法基于多状态约束卡尔曼滤波(MSCKF)构建视觉-惯性紧密耦合框架,整合了传统模型基方法与深度学习技术:设计轻量化扩张卷积神经网络(CNN),实时估计IMU测量的偏差和比例因子修正参数,并将其融入MSCKF的更新机制;同时提出多元耦合运动状态检测(MCMSD)与动态零更新机制相结合的融合策略,通过视觉光流信息与惯性数据的决策级融合实现精细运动状态判断,在静止状态时触发零速度、零角速率等伪测量更新以减少误差累积。实验验证表明,该方法在包含间歇性视觉失效的全程旋转运动中,姿态估计均方根误差(RMSE)低至°,相比传统CKF、IEKF等方法精度明显提升,且单帧更新耗时,兼顾了实时性与鲁棒性。在真实场景测试中,即使相机被遮挡15秒,该方法仍能明显减少IMU漂移,保持稳定的姿态追踪,充分满足实际应用需求。如何根据应用场景选择IMU的量程和精度?山东mems惯性传感器

传统智能假肢常因姿态感知滞后、动作响应不准确,导致截肢者行走步态僵硬、易失衡。近日,某科技公司推出集成高精度IMU的智能假肢操作系统,大幅提升假肢与人体动作的协同性。该系统在假肢膝关节、踝关节处内置多组微型IMU传感器,采样率达800Hz,实时捕捉截肢者残肢的运动姿态、角速度及地面反作用力相关振动信号。通过自研的步态识别算法,IMU数据与肌肉电信号融合,可准确判断行走、上下楼梯、爬坡等不同运动场景,动态调整假肢关节的阻尼和屈伸角度,实现步态自适应匹配。同时,IMU能响应突发姿态变化,如脚下打滑时,秒内触发关节锁止机制,降低摔倒可能。临床测试显示,佩戴该智能假肢的截肢者,步态对称性较传统假肢提升45%,上下楼梯时关节动作延迟小于秒,85%的受试者反馈行走自然度接近正常人群。该系统无需复杂校准,适配不同截肢部位,已进入临床应用阶段,未来有望结合AI算法进一步优化个性化步态方案。 浙江国产惯性传感器模块角度传感器的安装方式有哪些?

一支科研团队开发了基于惯性测量单元(IMU)的牧草生物量实时估算系统,为牧场轮牧规划和载畜量优化提供了低成本解决方案。该研究设计了两种IMU传感系统:IMU-Ski(将IMU传感器安装在连接压缩滑板的连杆上,通过滑板随作物冠层轮廓的垂直运动记录连杆角度变化)和IMU-Roller(在圆柱形滚筒两侧的连杆上安装双IMU传感器,同步记录两侧作物高度),并结合无人机RGB图像提取的植被覆盖率(VC),分别以总作物高度(TCH)、VC及两者组合为自变量,为百慕大草和紫花苜蓿构建预测模型。实验结果表明,IMU-Ski性能优于IMU-Roller,其基于TCH的模型在百慕大草中实现的决定系数(R²)和2628kg湿生物量/公顷的标准误差(SeY),在紫花苜蓿中R²达;TCH与VC组合虽在百慕大草中实现比较高R²(),但TCH的模型已能满足实用需求,且避免了VC数据采集与后处理的复杂性,为牧场牧草生物量估算提供了可行的技术方案。
负重行军等任务中,下肢肌肉骨骼损伤可能较高,但现有研究难以量化负载、速度、坡度等因素对人体运动负荷的影响,IMU传感器虽可替代地面反作用力测量,其信号对特定任务需求的敏感性仍不明确。近日,澳大利亚麦考瑞大学等团队在《Galt&Posture》期刊发表研究成果,揭示了负载、速度和坡度对IMU信号衰减的影响规律。研究在20名受试者(有19人完成)中开展,受试者佩戴23kg负重背心,在跑步机上完成不同速度(步行、跑步)、坡度(平地1%、上坡+6%、下坡-6%)及有无负载的组合运动。通过足部和骨盆佩戴的IMU采集垂直加速度数据,计算每步信号衰减、每公里信号衰减及相对衰减等指标,并结合光学运动捕捉和力平台数据进行关联分析。该研究明确了IMU信号衰减可敏感反映任务中的物理负荷变化,为量化负重运动中的人体负荷提供了便捷方法。未来可基于该成果开发运动负荷监测工具,优化训练方案,降低负重运动相关损伤可能。 惯性传感器在汽车行业有哪些应用?

马术训练中,骑手姿态偏差和马匹运动异常难以直观量化,传统训练依赖教练经验判断,效率有限。近日,某马术科技公司推出基于IMU的马术训练监测系统,为训练和业余骑乘提供数据化支撑。该系统包含骑手端和马匹端两套IMU传感器模块:骑手的头盔、躯干、腿部共部署5个IMU传感器,采样率达1000Hz,捕捉骑乘时的姿态角度、重心转移幅度;马匹的头部、颈部、背部及四肢安装6个IMU,实时采集马匹的步频、步幅、关节屈伸角度及颠簸程度。数据通过无线传输至终端,系统生成三维运动模型,量化分析骑手姿态稳定性、马匹运动协调性,识别过度前倾、缰绳拉扯过紧等问题,并提供针对性矫正建议。实测显示,该系统对马匹步频测量误差小于±步/分钟,骑手重心偏移识别准确率达96%,帮助骑手优化姿态后,马匹运动舒适度提升28%。目前已应用于马术队训练及马术俱乐部教学,未来将新增马匹状态监测功能。 IMU传感器的输出数据格式是什么?上海机器人传感器生产厂家
IMU传感器的成本差异较大,具体价格取决于性能、品牌和功能。山东mems惯性传感器
一支科研团队提出了一种基于消费级IMU设备(智能手机、智能手表、无线耳机)的日常步态分析方法,解决了传统步态分析依赖实验室环境和设备的局限性。该研究招募16名受试者(平均年龄岁),采集步行、慢跑、上下楼梯四种步态数据,测试了智能手机放在口袋、背包、肩包三种携带场景,通过iPhone14、AppleWatchSeries10、AirPodsPro的IMU传感器(加速度计+陀螺仪)收集数据,并以Xsens动作捕捉系统作为真值参考。数据经标准化和主成分分析(PCA)降维后,采用一种基于滑动窗口的新型算法进行步态分割与分组,通过连续性匹配分数(CMS)同时评估序列连续性和匹配质量。实验结果显示,算法整体分割准确率达,智能手机放口袋时性能比较好(),单一步态类型分析准确率更高(步行、慢跑);Rand验证了分组的可靠性,在背包等动态携带场景下略有下降。该方法利用普及的消费级设备实现了真实场景下的多类型步态分析,为监测、运动科学等领域的大规模步态研究提供了实用且低成本的解决方案。 山东mems惯性传感器