跑步者姿态和速度的监测可以通过在跑步者的日常训练计划中积累跑步时特定信息(例如步频和步幅)来实现。基于这个目的,日本大阪都市大学城市健康与体育研究中心YutaSuzuki团队设计了一种使用IMU估计跑步时足部轨迹及步长的方法。过去的几年中,在步态事件监测、步长估计方面,生物力学领域使用IMU进行了大量的研究工作。但由于IMU只在其自身的局部坐标系中测量三轴线性加速度、角速度和磁场强度,因此无法直接从IMU数据估计全局坐标系中的足部轨迹及步长。而从IMU数据计算轨迹的一个主要问题是加速度和角速度测量中的漂移,随着评估时间的增长,其位置和方位评估的结果会越发失真。解决这种漂移的一种流行方法是使用零速度假设进行捷联积分,其中假设无论跑步速度如何,足部在支持相中的某个特定时间点速度为零。YutaSuzuki团队在研究中,用安装在脚背上的两个IMU测量左右脚的加速度和角速度。足部轨迹和步幅长度是更具IMU数据的零速度假设估计的,并且估计IMU的旋转以计算两个连续步态支撑相中期的内外侧方向和垂直方向位移。导航传感器的主要功能是什么?上海六轴惯性传感器评测
葡萄牙研究团队开发了一种e-Textile智能背心,结合sEMG传感器和IMU,旨在实时监测和评估用户的前倾头姿势。研究团队将sEMG传感器集成到背心中,用于监测颈部肌肉活动,同时利用IMU传感器跟踪脊柱的曲度变化。实验结果显示,随着运动幅度的增大,sEMG传感器捕捉到的颈部肌肉活动增强,IMU传感器捕捉到脊柱曲度变化明显。实验结果显示,无论运动幅度如何,特别是大范围运动时,IMU传感器都能清晰地显示出肌肉活动变化和脊柱曲度变化,揭示了肌肉活动与头部前伸姿势风险之间的内在联系。浙江原装平衡传感器代理商IMU传感器的安装方式有哪些?
在医疗领域,IMU 是康复与手术的 “精细助手”。在康复设备中,IMU 可监测患者的关节运动,为医生提供步态分析、平衡评估等数据,辅助制定个性化康复方案。例如,智能康复手套中的 IMU 能实时捕捉手指动作,帮助中风患者进行精细运动训练。在手术导航中,IMU 可追踪手术器械的位置和角度,辅助医生精细操作。例如,在脊柱手术中,IMU 与 CT 影像结合,可引导穿刺针避开神经和血管,减少并发症风险。未来,IMU 还将在远程手术、可穿戴健康监测等领域发挥更大作用。
而国际足联宣布,在2022卡塔尔世界杯上使用半自动越位技术,为VAR官员和现场官员提供支持工具,帮助他们更快、更准确、在比较大的舞台上进行更多可重复的越位判定。本届世界比赛用球“ALRIHLA”,在阿拉伯语中意为“旅程”,是为卡塔尔2022世界杯设计的官方比赛用球,球内装有惯性测量单元(IMU)传感器,将为检测越位事件提供进一步的重要元素。这个传感器位于球的中心,每秒向视频操作室发送500次球数据,可以非常精确地检测出球点。同时比赛球场设有12个跟踪摄像头来跟踪球和每个球员的多达29个数据点,每秒50次,计算他们在球场上的确切位置。通过结合肢体和球跟踪数据并应用人工智能,每当队友接球时处于越位位置的攻击者接到球时,新技术就会向视频操作室内的视频比赛官员发出自动越位警报。IMU传感器的抗干扰能力如何?
IMU 是运动训练中的 “动作质检员”,通过高精度传感器实时捕捉人体运动数据,辅助运动员优化技术动作。例如,在滑雪训练中,IMU 可分析运动员的转弯角度、重心偏移和雪板压力分布,帮助教练识别导致速度损失的动作缺陷;在田径短跑中,它能监测起跑时的蹬地力量与身体前倾角度,避免因姿态失衡影响爆发力输出。在篮球、足球等球类运动中,IMU 能监测球员的跳跃高度、落地冲击力和关节扭转角度,预防运动损伤;针对排球扣球动作,还可追踪手臂挥击轨迹的角速度,评估击球力量与准确性的平衡。此外,IMU 与 AI 算法结合,可生成 3D 动作模型,让运动员直观对比标准动作与自身表现差异;未来,IMU 还将用于健身,通过可穿戴设备分析日常运动习惯,提供个性化健康建议,比如纠正跑步时的内翻足或过度跨步等不良姿态。角度传感器的主要应用领域有哪些?上海高精度惯性传感器代理商
IMU传感器适用于哪些应用场景?上海六轴惯性传感器评测
帕金森病(PD)患者在美国约有100万人,而全球患者超过1000万人。帕金森病是一种慢性的疾病退化性疾病,需要临床医生特别是运动障碍方面对患者进行密切监测。医生经常使用标准的临床仪器,如统一帕金森病评分量表(UPDRS)。通常来说,每名帕金森患者每年需要到临床医生诊所进行多次的病情评估。对于帕金森患者来说,这是一个很大的负担。美国ShehjarSadhu团队设计了一套基于机器学习的远程健康设备,利用UPDRS任务,远程检测手部运动并进行分类。该系统包含EdgeNode和FogNode。其中EdgeNode使用一双智能手套记录手部的活动,其集成了手指弯曲传感器和惯性测量单元(IMU),并将数据无线传输到FogNode进行分类。FogNode运行基于机器学习(ML)的活动分类模型,以对基于UPDRS的手部运动任务进行分类。上海六轴惯性传感器评测
上海惯师科技有限公司在同行业领域中,一直处在一个不断锐意进取,不断制造创新的市场高度,多年以来致力于发展富有创新价值理念的产品标准,在上海市等地区的电子元器件中始终保持良好的商业口碑,成绩让我们喜悦,但不会让我们止步,残酷的市场磨炼了我们坚强不屈的意志,和谐温馨的工作环境,富有营养的公司土壤滋养着我们不断开拓创新,勇于进取的无限潜力,上海惯师科技供应携手大家一起走向共同辉煌的未来,回首过去,我们不会因为取得了一点点成绩而沾沾自喜,相反的是面对竞争越来越激烈的市场氛围,我们更要明确自己的不足,做好迎接新挑战的准备,要不畏困难,激流勇进,以一个更崭新的精神面貌迎接大家,共同走向辉煌回来!