AOI 的实时工艺验证能力为新产品导入(NPI)提供关键支持,爱为视 SM510 在试产阶段可快速验证 PCBA 设计的可制造性(DFM)。通过对比设计文件与实际检测数据,系统能自动识别潜在的工艺风险,例如元件布局过于密集可能导致焊接不良、焊盘尺寸与元件引脚不匹配等问题。某消费电子厂商在新款手机主板试产时,AOI 检测发现 0402 元件...
查看详细 >>AOI 的应用场景灵活性是其竞争力之一,爱为视 SM510 支持回流焊炉前、炉后检测,可根据工艺需求灵活部署。炉前检测重点排查元件贴装缺陷(如偏移、缺件),避免不良流入焊接环节;炉后检测则专注焊锡缺陷(如连锡、假焊),实现全流程质量管控。此外,设备支持单段或多段式轨道设计,进出方向可选,可无缝对接不同产线布局,适应各类电子制造企业的车间规...
查看详细 >>图像采集阶段(光学扫描和数据收集)AOI的图像采集系统主要包括光电转化摄影系统,照明系统和控制系统三个部分。因为摄影得到的图像被用于与模板做对比,所以获取的图像信息准确性对于检测结果非常重要,可以想象一下,如果图像采集器看不清楚或看不到被检测物体的特征点,那么也就无法谈到准确的检出。下面我们对光电转化摄影系统,照明系统和控制系统三个部分逐...
查看详细 >>AI视觉在很大程度上提升了测量目标的准确性,人眼分辨识别的能力往往有限,对于极其微小的外观缺陷识别检测上具有一定的难度,甚至无法实现,但是这些不足,AI视觉都可以弥补,比如它对于微米级的缺陷目标检测可一步到位。人眼识别的速度与机器的速度对比也有很大的区别,人眼的识别能力使得它识别的速度被限定,AI视觉系统通过它强悍的机构驱动,快速移动扫描...
查看详细 >>AOI检测技术应运而生的背景是电子元件集成度与精细化程度高,检测速度与效率更高,检测零缺陷的发展需求。AOI检测的比较大的优点是节省人力,降低成本,提高生产效率,统一检测标准和排除人为因素干扰,保证了检测结果的稳定性,可重复性和准确性,及时发现产品的不良,确保出货质量。在人工智能技术与大数据发展进步中,AOI检测不仅是一部检测设备,对...
查看详细 >>如果把AI视觉比作一个个体,那么深度学习便成为这一个体中重要的机体之一,许多功能的存在直接来源且依赖于它。直观点说,深度学习算法成功运用于计算机视觉的实例如人脸识别、图像问答、物体检测与追踪等。人工检测在早期的工业质检中占有一定的优势,但随着生产科技的不端更新进步,制造环节对于检验水平的要求也越来越高,显然人工检查已无法满足,检测程度越来...
查看详细 >>