在数字经济蓬勃发展的2025年,数据已成为企业重要的资产之一。然而,随着人工智能、工业互联网等技术的深度应用,数据量呈指数级增长,传统存储方案在性能、扩展性与安全性上的短板日益凸显。在此背景下,深圳市倍联德实业有限公司(以下简称“倍联德”)凭借其在存储服务器领域的全栈技术能力与行业深耕经验,正为金融、医疗、科研等领域提供高效、安全、可扩展的存储解决方案,成为推动中国智造向绿色、智能转型的关键力量。倍联德成立于2015年,总部位于深圳龙岗,是一家专注于存储服务器、边缘计算与AI解决方案的国家高新企业。公司以“自主研发、中国智造”为战略重心,累计获得50余项技术与软著,其存储服务器产品线覆盖全闪存存储、分布式存储及液冷存储三大领域,形成差异化竞争优势。服务器厂商通过开放硬件接口标准,促进GPU、液冷与存储解决方案的跨品牌兼容。深圳智慧能源解决方案多少钱
随着Blackwell架构GPU与CXL内存扩展技术的商用化,倍联德正研发支持FP4精度计算的下一代服务器,预计将AI推理性能再提升2倍。公司创始人覃超剑表示:“我们的目标不只是提供硬件,更要通过软硬协同优化,让千亿参数大模型像使用办公软件一样便捷。”从金融交易到生命科学,从工业制造到智慧城市,倍联德实业有限公司正以全栈服务器解决方案为支点,撬动千行百业的数字化转型。在这场算力变革中,这家深圳企业正用技术创新诠释“中国智造”的全球竞争力。深圳服务器解决方案智慧城市解决方案为城市居民提供了更加便捷和智能的生活方式。
在材料科学领域,倍联德与中科院合作开发的液冷超算工作站集群,采用NVLink互联技术实现16张RTX 6000 Ada显卡的显存共享,使分子动力学模拟的原子数量从100万级提升至10亿级。在锂离子电池电解液研发项目中,该方案将模拟周期从3个月压缩至7天,助力团队快速筛选出性能提升40%的新型配方。倍联德通过“硬件+软件+服务”的一体化模式,构建起覆盖芯片厂商、ISV(单独软件开发商)及终端用户的开放生态。公司与NVIDIA、英特尔、华为等企业建立联合实验室,共同优化CUDA-X AI加速库与TensorRT推理框架。在2025年AMD行业方案全国大会上,倍联德展出的“Strix Halo”液冷工作站系统,通过集成AMD锐龙AI Max+395处理器与128GB LPDDR5x内存,实现了Llama 3模型推理的毫秒级响应,较前代方案性能提升2.3倍。
倍联德服务器解决方案已渗透至金融、医疗、科研等关键领域,形成从数据采集、存储到分析的全生命周期管理能力。在银行、证券领域,倍联德提供低延迟、高可靠的存储底座。其全闪存阵列支持双活数据中心部署,通过同步复制技术实现RPO=0、RTO<30秒的灾备标准。例如,某股份制银行采用倍联德存储集群后,重要系统交易响应时间从200毫秒降至80毫秒,年故障率从1.2次降至0.3次,客户满意度提升25%。针对医疗影像分析、基因测序等数据密集型场景,倍联德推出支持DICOM协议的医疗专业用存储系统。在宁波大学附属医院的生物信息分析平台项目中,其G808P-V3服务器搭载双路AMD EPYC 7763处理器与128TB NVMe SSD缓存层,将6710亿参数的DeepSeek医学大模型训练时间从72小时压缩至8小时,同时通过WORM技术确保数据不可篡改,满足HIPAA合规要求。云边端协同架构推动5G专网在工业互联网中的落地,满足低时延与高可靠性要求。
倍联德液冷系统采用微通道冷板与螺旋板式热交换器,通过优化流体动力学路径,将热传导效率提升至传统风冷的5倍以上。例如,其R500Q系列2U液冷服务器在搭载8张NVIDIA RTX 5880 Ada显卡时,单柜功率密度达50kW,但通过冷板式液冷技术将PUE值压低至1.05,较风冷方案节能40%。在某三甲医院的DeepSeek医学大模型训练中,该方案使单次训练碳排放从1.2吨降至0.3吨,相当于种植16棵冷杉的环保效益。针对液冷系统维护复杂的问题,倍联德开发了AI动态调温平台,通过实时监测冷却液流量、温度及设备负载,自动调节泵速与散热模块功率。在香港科技大学的深度学习平台升级项目中,该系统使4张NVIDIA RTX 4090显卡的硬件利用率达98%,模型训练时间从72小时压缩至8小时,而部署成本只为传统方案的1/3。边缘计算解决方案在物联网和工业互联网中发挥着越来越重要的作用。深圳服务器解决方案
自动驾驶训练中,GPU集群通过模拟数十亿公里路况数据,快速迭代感知与决策算法,提升安全性。深圳智慧能源解决方案多少钱
针对高密度计算场景的散热难题,倍联德推出R300Q/R500Q系列2U液冷服务器,采用冷板式液冷设计,PUE值低至1.05,较传统风冷方案节能40%。以某三甲医院为例,其部署的R500Q液冷工作站搭载8张NVIDIA RTX 5880 Ada显卡,在运行6710亿参数的DeepSeek医学大模型时,单柜功率密度达50kW,但通过液冷技术将噪音控制在55分贝以下,同时使单次模型训练的碳排放从1.2吨降至0.3吨,相当于种植16棵冷杉的环保效益。倍联德自主研发的异构计算平台支持CPU+GPU+DPU协同工作,通过动态资源调度优化计算-通信重叠率。在香港科技大学的深度学习平台升级项目中,其定制化工作站采用4张NVIDIA RTX 4090显卡与至强四代处理器组合,配合TensorFlow框架实现98%的硬件利用率,使ResNet-152模型的训练时间从72小时压缩至8小时,而部署成本只为传统方案的1/3。深圳智慧能源解决方案多少钱