在很长一段时间内,传统的粮库害虫检查方法是依靠人工巡检,用肉眼观察,逐仓筛查的方法,这种方法覆盖面不足且效率低下,筛查一次将耗费工作人员的大量时间精力。随着技术的发展,AI化的筛查逐步采用,通过算法的AI识别实现自动化筛查。方法基于高像素高清摄像机,实时远程监控粮库,一旦发现害虫就能够立即向管理平台...
无人机在农业领域能够实现高效率的施肥、播种等操作。但是不同的作业环境对于无人机的工作性能要求不一样,同样的方案在平原地区适用,在高原地区就不行。因此针对于特殊作业环境需要制定不同的智慧化方案。像青藏高原这样地貌复杂、低气压、大温差的特点,参与智能化工作的各个部件需要符合这样作业环境特点的性能要求。不比平原的一马平川,高原由于环境复杂,地形起伏对于无人机的飞行也需要进行控制,无论是高度还是速度甚至距离都需要进行严格限制,防止出现撞机等事故。因此,这个方面的智慧化建设就需要无人机具备智能避障的功能,无人机需要在高速度或者远距离的情况下识别树木、电线杆、石头等障碍物,并能够实现避障。省时省力目标跟踪互惠互利RK3588图像处理板识别概率超过85%。
成都慧视开发的图像跟踪板能够实现高精度的自动目标视频跟踪,所谓自动视频跟踪,是利用视频的图像信号,自动进行目标的检测、识别、定位,自动控制云台和摄像机的运动,跟踪和锁定目标。过去在安防领域,视频信号一般都是可见光的摄像机产生的PAL制或NTSC制的模拟信号;现在,随着320x240左右分辨率的非制冷的红外热象仪的价格进一步下降,热成像传感器将由jun用领域进入安防领域,以弥补CCD摄像机的夜晚成象质量差和非全天候等的问题。
在深度学习中,解决训练数据不足常用的一个技巧是“预训练-微调”(Pretraining-finetune),即大数据集上面预训练模型,然后在小数据集上去微调权重。但是,在训练数据极其稀少的时候(只有个位数的训练图片),这个技巧是无法奏效的。图2展示了一个检测模型预训练过后,在单张训练图片上微调的过程:尽管训练集上逐渐收敛,但是检测器仍无法检测出测试图片中的物体。这反映出了“预训练-微调”框架的泛化能力不足。利用SpeedDP经过大量的数据训练后,机器就能够精确检测跟踪图像中的物体。有没有能够进行目标跟踪的产品?
在目标跟踪领域,场景信息与目标状态的融合十分重要,首先,场景信息包含了丰富的环境上下文信息,对场景信息进行分析及充分利用,能够有效地获取场景的先验知识,降低复杂的背景环境以及场景中与目标相似的物体的干扰;同样地,对目标的准确描述有助于提升检测与跟踪算法的准确性与鲁棒性.总之,尝试研究结合背景信息和前景目标信息的分析方法,融合场景信息与目标状态,将有助于提高算法的实用性能。慧视光电开发的图像处理板,具备高性能、高精度的特点,能够进行精确的目标跟踪。RK3588处理板,智慧视觉应用开发板。省时省力目标跟踪互惠互利
搭载AI智能算法的跟踪板如何实现目标识别及跟踪?省时省力目标跟踪互惠互利
目标检测和跟踪是计算机视觉领域中的重要任务之一。随着深度学习的兴起,YOLO(You Only Look Once)算法在目标检测和跟踪领域引起了广关注。YOLO算法是一种在实时目标检测和跟踪领域具有重要地位的算法。通过引入卷积神经网络和一系列先进技术,YOLO算法在速度和准确性方面取得了明显的进展。然而,仍然有一些挑战需要解决,如目标尺度变化、小目标检测和复杂背景干扰等。随着研究的不断深入和技术的不断发展,YOLO算法有望在实时目标检测和跟踪领域发挥更大的作用。省时省力目标跟踪互惠互利
在很长一段时间内,传统的粮库害虫检查方法是依靠人工巡检,用肉眼观察,逐仓筛查的方法,这种方法覆盖面不足且效率低下,筛查一次将耗费工作人员的大量时间精力。随着技术的发展,AI化的筛查逐步采用,通过算法的AI识别实现自动化筛查。方法基于高像素高清摄像机,实时远程监控粮库,一旦发现害虫就能够立即向管理平台...
黑龙江企业图像标注大概价格
2025-05-12湖北边海防AI智能算法
2025-05-12重庆高清视频压缩与传输不降低画质
2025-05-12甘肃AI智能供应商
2025-05-12吉林可视化视频压缩与传输高清
2025-05-12成都智慧监狱AI智能监控
2025-05-11云南AI智能专业方案
2025-05-11无源图像处理板诚信推荐
2025-05-11云南专业视频压缩与传输系统
2025-05-11