光伏发电数据是指与太阳能光伏发电系统相关的各种观测和测量数据。光伏发电数据类型:发电功率数据:光伏发电系统的发电功率是指单位时间内系统所产生的电能。发电功率数据记录光伏系统的实时发电功率、每日发电量、月度发电量等。太阳辐射数据:太阳辐射数据描述太阳能辐射到光伏板上的能量。这些数据包括太阳辐照度、太阳辐照总量、太阳辐射分布等。温度数据:温度对光伏系统性能有一定影响。温度数据记录光伏板表面温度、环境温度等。电压和电流数据:光伏发电系统产生直流电经过逆变器转换成交流电。电压和电流数据记录逆变器的输出电压和电流等参数。效率数据:光伏系统的效率是指太阳能转换为电能的比例。效率数据记录光伏系统的实时效率、每日效率、月度效率等。运行状态数据:光伏发电系统的运行状态数据包括开关状态、故障报警、维护记录等信息。数据监测和采集系统数据:光伏发电系统通常配备数据监测和采集系统,用于实时监测和记录各种参数。这些数据包括系统状态、数据采集频率、数据传输等。这些光伏发电数据可以用于分析光伏系统的性能、评估发电效果、进行故障诊断和优化运行等。通过对这些数据的分析和利用,可提高光伏发电系统的效率、可靠性和经济性。 平台能够实时下载全球任意单点位置或地域平均统计的历史40年至未来7日预测的11种气象小时级数据。辐照数据数据
羲和能源气象大数据平台数据源为再分析及生成数据,长期以来其数据准确性得到用户的认可。平台数据准确度验证以美国国家还有和大气管理局NOAA地面气象站的真实观测数据作为对比样本,选取典型年年度数据为对比周期,于国内各大区域随机选取对比气象站,基于统计学算法计算平台数据与实际观测数据偏差。精度验证使用参考数据来验证不同指标测算结果的精度。参考数据来源于NOAA美国国家海洋大气局及场站实测汇总,待验证数据来源于欧洲中期天气中心、美国国家航空航天局以及本平台自研的羲和数源。精度验证需要明确对比指标的类别。气象指标:温度、湿度、风速、风向、降水;出力指标:光伏电场发电功率、风电场发电功率。执行精度验证还需指定两个参数:采样方式和对比策略。采样时间:参考数据源时间区间均为全年,待验证数据的时间区间与参考数据完全匹配;采样范围:指标采样范围覆盖全国;对比策略:以平均差异百分比作为衡量标准,将每个点的误差进行归一化。通过上述气象数据对比及发电数据对比分析显示出羲和能源气象大数据平台的数据源,即羲和数源、欧洲中期天气中心和美国国家航空航天局的数据精度都较高,可满足大多数工程使用以及科学研究的需要。 江西辐照数据搜索羲和能源气象大数据平台由南京图德科技有限公司开发,于2022年2月上线运行。
风向是指风的吹向或来自的方向。测量风向的常用方法包括以下几种。风向标,风向标是一种常见的测量风向的工具。它通常由一个轴和一个指示风向的标志物组成,标志物会随着风的吹向而指向相应的方向。风向标可以是简单的风筝形状,也可以是复杂的带有指示刻度的仪器。风向标通常安装在高处,避免受到地面障碍物的影响。风向传感器,风向传感器是一种电子设备,用于测量风的吹向。它通常包括一个或多个风向传感器,可以通过测量风的压力或风的方向来确定风向。风向传感器通常与其他气象传感器一起使用,将风向数据传输给数据采集系统进行记录和分析。雷达风向测量,气象雷达可以通过测量大气中雨滴或颗粒的运动来推断风向。雷达会发送微波信号,当信号遇到雨滴或颗粒时,会发生散射。通过分析散射信号的方向和强度,可以推断出风的吹向。卫星观测,卫星可以通过观测云的移动和形态变化来推断风向。卫星图像显示了云的位置和形状,通过比较不同时间的图像,可以确定云的移动方向,从而推断出风的吹向。这些方法可以单独或结合使用,以获取准确的风向数据。在气象观测站、气象雷达站、船舶、飞机等地方都可以进行风向测量。
由南京图德科技有限公司开发,于2022年2月上线运行。平台能够实时下载全球任意单点位置或地域平均统计的历史40年至未来7日预测的11种气象小时级数据,及以此为基准生成的风电、光伏发电功率数据。同时还可以提供多种地理信息数据和260余种更多属性数据定制下载。所以,气象数据庞大成为羲和能源气象大数据平台的特点,并且确保平台成为一个强大的信息资源库,为用户提供准确的决策依据,助力各行业的发展和创新。而处理和存储如此庞大的数据需要强大的计算和存储能力,同时还需要高效的数据管理和分析技术。羲和能源气象大数据平台凭借其先进的技术和专业团队,能够应对这些挑战,并将庞大的气象数据转化为有用的信息,为用户提供更好的服务和支持。 气象数据可以以不同格式进行存储传输,如文本格式、图像格式、NetCDF格式等,具体取决于数据的用途和需求。
“碳达峰碳中和”的推进离不开森林植被和农作物的对碳的吸收。同样,森林资源类专业、农业发展与降水、气温、光照等气象数据联系紧密,海水、湖泊、湿地等对二氧化碳的固定能力也与气象条件高度相关。因此,开展农业、林业及地球大气、生态研究需要气象数据支撑,并以此为基础开展碳中和实施研究。由此可见,地理位置、精确到小时甚至分钟级的气象数据、风光发电数据、地理数据是高等院校、研究机构开展“碳中和”专业研究必需“数据原料”。羲和能源集成数据科研平台能够为高校师生提供全球历史任意位置历史40余和未来7日内预测的高精度、小时级多种气象数据,及以此为基准生成的风电、光伏发电功率数据。同时还可以提供气象数据图谱、风光资源图谱、气象演变动态展示、可再生能源发展量化评估等功能。同时还可以提供不同位置的地理信息数据。通过对数据的处理分析计算,平台还可以提供地区新能源资源分析、光伏倾角优化、光伏电站系统方案设计功能,能够支撑双碳相关“产学研”发展。 气象数据基于人工智能和机器学习算法研发了气象要素降尺度计算内核,实现数据精度大幅提升。江西辐照数据搜索
平台可以提供多种地理信息数据和260余种更多属性数据定制下载。辐照数据数据
大数据技术可以实时收集、监测和分析气象数据,包括降雨量、风速、温度等指标。通过对实时数据的分析,可以及早发现异常情况和潜在的灾害风险,并快速启动相应的预警措施。利用历史观测数据和模型输出数据,建立强天气事件的预测模型。通过不断比对实时数据和模型预测结果,可以及时发出相应的天气预警,提醒人们采取必要的防护措施。对气象数据进行空间分布分析,识别出潜在的灾害风险区域。通过将预警信息与地理信息系统结合起来,可以实现预警信息的精确定位和传播,帮助人们针对性地采取应对措施。辐照数据数据