第四代张量:片间通信速率提高了6倍(包括单个SM加速、额外的SM数量、更高的时钟);在等效数据类型上提供了2倍的矩阵乘加(MatrixMultiply-Accumulate,MMA)计算速率,相比于之前的16位浮点运算,使用新的FP8数据类型使速率提高了4倍;稀疏性特征利用了深度学习网络中的细粒度结构化稀疏性,使标准张量性能翻倍。新的DPX指令加速了动态规划算法达到7倍。IEEEFP64和FP32的芯片到芯片处理速率提高了3倍(因为单个SM逐时钟(clock-for-clock)性能提高了2倍;额外的SM数量;更快的时钟)新的线程块集群特性(ThreadBlockClusterfeature)允许在更大的粒度上对局部性进行编程控制(相比于单个SM上的单线程块)。这扩展了CUDA编程模型,在编程层次结构中增加了另一个层次,包括线程(Thread)、线程块(ThreadBlocks)、线程块集群(ThreadBlockCluster)和网格(Grids)。集群允许多个线程块在多个SM上并发运行,以同步和协作的获取数据和交换数据。新的异步执行特征包括一个新的张量存储加速(TensorMemoryAccelerator,TMA)单元,它可以在全局内存和共享内存之间非常有效的传输大块数据。TMA还支持集群中线程块之间的异步拷贝。还有一种新的异步事务屏障。H100 GPU 拥有 8192 个 CUDA。IranH100GPU price
H100 GPU 在边缘计算中的应用也非常多。其高性能计算能力和低功耗设计使其非常适合用于边缘计算。H100 GPU 的强大并行处理能力可以高效处理实时数据,提升应用的响应速度和可靠性。无论是在智能制造、智慧城市还是物联网应用中,H100 GPU 都能提升数据处理效率,满足边缘计算的需求。其紧凑设计和高能效比为边缘计算设备提供了理想的硬件支持,是边缘计算领域的重要组成部分。
在游戏开发领域,H100 GPU 提供了强大的图形处理能力和计算性能。它能够实现复杂和逼真的游戏画面,提高游戏的视觉效果和玩家体验。H100 GPU 的并行处理单元可以高效处理大量图形和物理运算,减少延迟和卡顿现象。对于开发者来说,H100 GPU 的稳定性和高能效为长时间的开发和测试提供了可靠保障,助力开发者创造出更具创意和吸引力的游戏作品,是游戏开发的理想选择。 IranH100GPU priceH100 GPU 促销降价,快来选购。
H100 GPU 通过其强大的计算能力和高效的数据传输能力,为分布式计算提供了强有力的支持。其并行处理能力和大带宽内存可以高效处理和传输大量数据,提升整体计算效率。H100 GPU 的稳定性和可靠性为长时间高负荷运行的分布式计算任务提供了坚实保障。此外,H100 GPU 的灵活扩展能力使其能够轻松集成到各种分布式计算架构中,满足不同应用需求,成为分布式计算领域的重要工具。H100 GPU 的市场价格在过去一段时间内经历了明显的波动。随着高性能计算需求的增加,H100 GPU 在人工智能、深度学习和大数据分析等领域的应用越来越多,市场需求不断攀升,推动了价格的上涨。同时,全球芯片短缺和物流成本的上升也对 H100 GPU 的价格产生了不利影响。尽管如此,随着供应链的逐步恢复和市场需求的平衡,H100 GPU 的价格有望在未来逐渐回落。对于企业和研究机构来说,了解价格动态并选择合适的采购时机至关重要。
H100中新的第四代TensorCore架构提供了每SM的原始稠密和稀疏矩阵数学吞吐量的两倍支持FP8、FP16、BF16、TF32、FP64、INT8等MMA数据类型。新的TensorCores还具有更**的数据管理,节省了高达30%的操作数交付能力。FP8数据格式与FP16相比,FP8的数据存储需求减半,吞吐量提高一倍。新的TransformerEngine(在下面的章节中进行阐述)同时使用FP8和FP16两种精度,以减少内存占用和提高性能,同时对大型语言和其他模型仍然保持精度。用于加速动态规划(“DynamicProgramming”)的DPX指令新引入的DPX指令为许多DP算法的内循环提供了高等融合操作数的支持,使得动态规划算法的性能相比于AmpereGPU高提升了7倍。L1数据cache和共享内存结合将L1数据cache和共享内存功能合并到单个内存块中简化了编程,减少了达到峰值或接近峰值应用性能所需的调优;为这两种类型的内存访问提供了佳的综合性能。H100GPU层次结构和异步性改进关键数据局部性:将程序数据尽可能的靠近执行单元异步执行:寻找的任务与内存传输和其他事物重叠。目标是使GPU中的所有单元都能得到充分利用。线程块集群(ThreadBlockClusters)提出背景:线程块包含多个线程并发运行在单个SM上。能够实现更加复杂和逼真的游戏画面。
利用 NVIDIA H100 Tensor GPU,提供所有工作负载前所未有的效能、可扩展性和安全性。 使用 NVIDIA® NVLink® Switch 系统,比较高可连接 256 个 H100 来加速百万兆级工作负载,此外还有的 Transformer Engine,可解决一兆参数语言模型。 H100 所结合的技术创新,可加速大型语言模型速度,比前一代快上 30 倍,提供业界的对话式人工智能。英伟达 DGX SuperPOD架构采用英伟达的NVLink和NVSwitch系统,多可连接32个DGX节点,共256个H100 GPU。这是一个真正的人工智能基础设施平台;英伟达的DGX SuperPOD数据中心设计[4]让我们对真正的企业人工智能基础设施的巨大功率和冷却需求有了一些了解。H100 GPU 特惠销售,快来选购。IranH100GPU price
H100 GPU 适用于智能制造领域。IranH100GPU price
交换机的总吞吐率从上一代的Tbits/sec提高到Tbits/sec。还通过多播和NVIDIASHARP网内精简提供了集群操作的硬件加速。加速集群操作包括写广播(all_gather)、reduce_scatter、广播原子。组内多播和缩减能提供2倍的吞吐量增益,同时降低了小块大小的延迟。集群的NVSwitch加速降低了用于集群通信的SM的负载。新的NVLink交换系统新的NVLINK网络技术和新的第三代NVSwitch相结合,使NVIDIA能够以前所未有的通信带宽构建大规模的NVLink交换系统网络。NVLink交换系统支持多达256个GPU。连接的节点能够提供TB的全向带宽,并且能够提供1exaFLOP的FP8稀疏AI计算能力。PCIeGen5H100集成了PCIExpressGen5×16通道接口,提供128GB/sec的总带宽(单方向上64GB/s),而A100包含的Gen4PCIe的总带宽为64GB/sec(单方向上为32GB/s)。利用其PCIeGen5接口,H100可以与性能高的x86CPU和SmartNICs/DPUs(数据处理单元)接口。H100增加了对本地PCIe原子操作的支持,如对32位和64位数据类型的原子CAS、原子交换和原子取指添加,加速了CPU和GPU之间的同步和原子操作H100还支持SingleRootInput/OutputVirtualization(SR-IOV)。IranH100GPU price